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Monte Carlo Calculations on the Beta-Delta Phase 
Transition in Nitrogen with a Generalized 
Free Energy Method 
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Monte Carlo simulations that utilize an (N, P, T) ensemble with periodic defor- 
mable boundary conditions cannot describe phase transitions properly when a 
large potential barrier is involved. An alternative method is to calculate the 
Gibbs free energy difference between phases; the transition occurs when the 
difference is equal to zero, The Gibbs free-energy difference can be calculated 
using a generalized free-energy method. This method is used to determine the 
fl-~ phase transition of solid nitrogen at room temperature. The Gibbs free- 
energy difference between the fl and the ~ phase was obtained at 4.0 GPa. The 
difference at other pressures could be determined with the equation of state. The 
transition pressure was found at about 6.2 GPa, 1.3 GPa above the experi- 
mental pressure. 

KEY WORDS: Gibbs free energy; high pressure; Monte Carlo; nitrogen; 
phase transition. 

1. I N T R O D U C T I O N  

One of the many phase transitions that can occur in solid nitrogen is the 
fl-fi phase transition (Fig. 1). The fl phase has a hexagonal close-packed 
(hcp) structure in which the orientations of the nitrogen molecules are 
spherically disordered [ 1-7 ]. The structure of the ~ phase (Pm3n) [ 8-10 ] 
is cubic, with eight molecules per unit cell. The molecules at the corners 
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Fig. l. Phase diagram of nitrogen. 

and at the center of the cell are spherically disordered. The orientation of 
the molecules in the faces of the cell are disk-like disordered. The transition 
pressure at 300 K was found experimentally at about 4.9 GPa [10, 11]. 
Both phases could be observed within a region around the transition 
pressure. Belak etal. [12] performed Monte Carlo simulations on this 
system at 300 K using an (N, P, T) ensemble with a deformable box. It 
was found that both phases continued to exist beyond the experimental 
transition pressure, however no phase transition was found. We have 
determined the fl-~ phase transition with Monte Carlo simulations using 
the generalized free-energy method. 

2. M E T H O D  

An equilibrium transition from phase i to phase j might occur when 
the difference in Gibbs free energy vanishes. This quantity can be calculated 
with a free-energy method [13, 14]. An artificial control parameter, ~, 
provides a reversible path from one phase to the other. The enthalpy is 
defined by 

H(2) =,~Hi+ (1 - ~ )  Hj (1) 

where H i and H i represent the enthalpies of phases i and j, respectively, 
and 0 ~< ;t ~< 1. Furthermore, 

aG( ,~ )la,t = (aH( ,~) la , t )  ~ = ( H i -  H i )  ~ (2) 

and the Gibbs free-energy difference between phase i and phase j is 

AGij(P) = G i -  Gj = f l  (OH(2)/O2>a d2 (3) 
~0 
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where the averages are taken over the Boltzman distribution 
e x p [ - H ( 2 ) / k B T ] .  The averages <Hi>.~ and (Hy>a can be determined 
by using the same set of Monte~ Carlo configurations in the (N, P, T) 
ensemble, even when the states (i, j) have different structures. Symmetry 
transformations are then performed on the 5N molecular coordinates and 
the vectors defining the Monte Carlo unit cell from state i to state j. 
However, no suitable symmetry transformation is known between the fl 
and the ~ phase. 

To solve this problem a model system is introduced under the follow- 
ing constraints. It should be possible to calculate the free energy of this 
model system easily and there should be a reversible path from the model 
system to the real system. To accomplish this we used a model system with 
the molecules at the same lattice positions as the real system and with 
harmonic forces between the nearest neighbors. The Gibbs free energy of 
the harmonic system can be calculated by 

G h = F h + P V  h (4)  

With Eqs. (3) and (4) the Gibbs free energy of the real system can be 
calculated. In this way the Gibbs free energy of the fl as well as of the 
phase was determined separately with the corresponding model system. By 
calculating the Gibbs free-energy difference between the fl and the ~ phase 
at various pressures, the transition pressure Pt is obtained from 

AGp~(e,)=0 (5) 

The Gibbs free-energy difference at various pressures can be calculated 
with the free energy method for each pressure. 

It is also possible to calculate this quantity with the free-energy 
method for just one pressure to determine the free energy at other pressures 
with the equation 

V 
F(V)=F(Vo)--f P(V)dV (6) 

VO 

The harmonic model system with the structure of the fl phase (hcp) has 12 
nearest neighbors. In the case of the ~ phase, the lattice positions corre- 
sponding to the spherically disordered molecules will have 12 disk-like 
disordered neighbors and the lattice positions corresponding to the disk- 
like disordered molecules will have 4 spherically disordered and 10 disk- 
like disordered neighbors. The energy between two lattice sides is given by 

E o. = �89 U - Rr0#) 2 (7) 
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where rO u is the distance between the molecules when they are at the lattice 
positions of the initial volume, V ~ To obtain a smooth curve, required for 
the evaluation of the integral of Eq. (3), the values of k and R are deter- 
mined at each state point in such a way that the energy and volume of the 
harmonic model system is the same as the corresponding real system. The 
free energy of the harmonic system is calculated by making the approxima- 
tion of a decoupled harmonic system with the nearest neighbors at the 
lattice positions. If the deviation from the equilibrium position is small, 
denoting the position and the equilibrium position of particle i by r; 
and r0 a, respectively, and summing over all nearest neighbors, Eq. (7) gives 

E,. = �89 r0i) 2 + Eoi (8) 

for the ]~ phase and the spherically disordered molecules of the J phase, 
and 

~_kx(x- x0) 2 + 1 ,' 2 I , _ Ei 1 t = - y0) + 1kz(.~ + Eo; (9) _~ky(y - z0) 2 

for the disk-like disordered molecules of the J phase. 
The energy Eo; is given by 

n .n .  

Eo,= ~ l k (R  U-  Rr0u) 2 (10) 
jffil 

where R o. is the distance between the molecules when they are at the lattice 
positions of the equilibrium volume. The free energy per particle in units of 
K for the harmonic system corresponding with the fl phase will be 

F= - ~ T l n [  4nT/VZ/3k '] + �89 E o (11) 

and for the harmonic system corresponding to the J phase, 

3 9 / 3  I I i I - -  1 / 4  F = - ~ _ T I n [ ( 4 n T / V -  )(kkxk,,k:) ] + ~(Eos + 3EoD) (12) 

where l / i s  the equilibrium volume and Eos is the E o for the spherically 
disordered and EoD for the disk-like disordered particles. 

t I The values of k', k ' ,  ky, k_,, E o, Eos, and EOD can be determined by 
displacing one particle in the harmonic system with the equilibrium 
volume, while keeping the other particles fixed. 

The calculations were performed at T=300  K with an (N, P, T) 
ensemble. The site-site potential derived by Etters et al. [15] was used 
between a pair of N 2 molecules. With this potential a wide range of proper- 
ties of nitrogen can be accurately described. The Monte Carlo cell of the 
J phase consisted of 64 molecules. The unit cell for the fl phase was taken 
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rectangular and contained four molecules; the total Monte Carlo cell 
consisted of 108 molecules. After an equilibration run of 104 Monte Carlo 
steps, the thermodynamic averages were taken through another 104 steps. 
Each step consisted of a random move of the position and the orientation 
of each molecule and a change in the size of the Monte Carlo cell. To do 
better statistics on the volume of the harmonic ( 2 = 0 )  and the physical 
(A = 1) systems, we used an equilibration run of 5 x 10 4 MC steps followed 
by a production run of l0 s steps. The integral in Eq. (3) was calculated 
with the extended Simpson's rule over the interval 0 ~< A ~< 1 in steps of 0.05. 

3. RESULTS 

The results are summarized in Tables I, II, and III. The parameters of 
the harmonic systems are determined at 4.0 GPa, resulting in a volume and 
energy identical to that of the corresponding real system. The free energy 
of the harmonic system was calculated with Eqs. (11) and (12) and the AG 
between the harmonic and the real system was determined by evaluating 
the integral of Eq. (3) (Table I). Next, the Gibbs free energy and free 
energy of the fl and ~ phase could be calculated at 4.0 GPa. To determine 
the Gibbs free energy of the fl and ~ phase at 5.0, 6.0, 7.0, and 8.0 GPa, 
Eq. (6) was used, where the expression for P(V) was obtained by a fit 
through the (P, V) data (Tables II and III). The difference in Gibbs free 
energy between the fl and the ~ phase is plotted in Fig. 2. The transition is 
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Fig. 2. The calculated Gibbs free-energy 
difference between the fl and the g phase of 
nitrogen, Gp-Ga, at room temperature. The 
line is a guide to the eye. 
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Table I. 

Mulder, Michels, Sehouten, Kuchta, and Etters 

The Parameters, Volume, Free Energy, and Gibbs Free-Energy Difference of the 
Harmonic Systems at 4.0 GPa 

V ~  18.79 cm3-mol -I 
Vh= 18.789(3)cm3.mol -I  

~ G = - - 9 4 5 ( 5 ) K  
Fh=2188(2)K 

V ~ = 18.72 cm3.mol -I 
Vh= 18.718(3)cm3.mol - t  

d G =  --857(4) K 
Fh=2154(2)K 

k =  30,000K 
R =  1.0105 

fl phase 

J phase 

k = 36,000K. A -2 
R = 1.0105 
k '=35,330(60)K.  A -2 
E0= 298(3)K 

k~= 36,310(30)K.A -2 
k; .=36,310(30)K.A -a 
k~= 30,250(30)K.A -2 
k ' =  29,340(30)K. A -2 

EoD=247(3)K 
Eos=313(3)K 

Table II. Calculated Volume and Free Energy for the fl and J Phase at Various Pressures 

fl phase J phase 

Pressure Volume Free energy Volume Free energy 
(GPa) (cm3. mol -I  ) (K) (cm 3 .mol - t  ) (K) 

4.0 18.783(7) 1246(6) 18.712(5) 1300(5) 
5.0 17.929(5) 1704(6) 17.862(4) 1756(5) 
6.0 17.260(5) 2145(6) 17.184(4) 2202(5) 
7.0 16.711(4) 2573(6) 16.626(6) 2638(5) 
8.0 16.246(2) 2992(6) 16.155(3) 3063(5) 

Table III. Calculated Gibbs Free Energy and Difference Gibbs Free Energy for the fl and J 
Phase at Various Pressures 

Gibbs free energy (K) 
Difference 

Pressure fl phase J phase Gibbs free energy 
(GPa) (K) (K) (K) 

4.0 10277(5) 10297(5) - 20(7) 
5.0 12479(7) 12491(5) - 12(9) 
6.0 14593(7 ) 14595(6) - 2(9 ) 
7.0 16634(7) 16627(7) 7(10) 
8.0 18614(6) 18598(6) 16(8) 
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found at  a b o u t  6.2 + 1.0 G P a ,  which is 1.3 G P a  off in pressure  c o m p a r e d  
with the exper imenta l  value.  A possible  reason for this difference could  be 
the a p p r o x i m a t i o n  made  to calcula te  the free energy of  the h a r m o n i c  
system. To verify this, s imula t ions  have to be pe r fo rmed  to calculate  the 
Gibbs  free energy at  different pressures by  evalua t ing  the integral  of  
Eq. (3). The  results  should  be c o m p a r e d  with the results  ob ta ined  with the 
equa t ion  of  state. In  conclusion,  with the free-energy m e t h o d  it is poss ible  
to calculate  the f l -6  t rans i t ion  in n i t rogen in good  agreement  with 
experiment .  
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